ICA Mixture Model based Unsupervised Classification of Hyperspectral Imagery
نویسندگان
چکیده
Conventional remote sensing classification techniques that model the data in each class with a multivariate Gaussian distribution are inefficient, as this assumption is generally not valid in practice. We present a novel, Independent Component Analysis (ICA) based approach for unsupervised classification of hyperspectral imagery. ICA, employed for a mixture model, estimates the data density in each class and models class distributions with non-Gaussian structure, formulating the ICA mixture model (ICAMM). We apply the ICAMM for unsupervised classification of a test image from the AVIRIS sensor. Four feature extraction techniques namely Principal Component Analysis, Segmented Principal Component Analysis, Orthogonal Subspace Projection and Projection Pursuit have been considered as preprocessing steps for reducing the data dimensionality. The results demonstrate that the ICAMM significantly outperforms the K-means algorithm for land cover classification of hyperspectral imagery implemented on reduced data sets. Moreover, datasets extracted using Segmented Principal Component Analysis produce the highest classification accuracy.
منابع مشابه
Some Recent Results on Hyperspectral Image Classification*
In this paper, we present a summary of our ongoing research on the classification of hyperspectral images. We are experimenting with both supervised and unsupervised algorithms. In particular, we have developed an unsupervised classification algorithm based on Independent Component Analysis (ICA). This algorithm is known as the ICA mixture model (ICAMM) algorithm and has shown promising results...
متن کاملLinear spectral random mixture analysis for hyperspectral imagery
Independent component analysis (ICA) has shown success in blind source separation and channel equalization. Its applications to remotely sensed images have been investigated in recent years. Linear spectral mixture analysis (LSMA) has been widely used for subpixel detection and mixed pixel classification. It models an image pixel as a linear mixture of materials present in an image where the ma...
متن کاملUnmixing Hyperspectral Data
In hyperspectral imagery one pixel typically consists of a mixture of the re ectance spectra of several materials, where the mixture coe cients correspond to the abundances of the constituting materials. We assume linear combinations of re ectance spectra with some additive normal sensor noise and derive a probabilistic MAP framework for analyzing hyperspectral data. As the material reectance c...
متن کاملA parallel unmixing algorithm for hyperspectral images
We present a new algorithm for feature extraction in hyperspectral images based on source separation and parallel computing. In source separation, given a linear mixture of sources, the goal is to recover the components by producing an unmixing matrix. In hyperspectral imagery, the mixing transform and the separated components can be associated with endmembers and their abundances. Source separ...
متن کاملClassifying Hyperspectral Remote Sensing Imagery With Independent Component Analysis
In this paper, we investigate the application of independent component analysis (ICA) to remotely sensed hyperspectral image classification. We focus on the performance of Joint Approximate Diagonalization of Eigenmatrices (JADE) algorithm, although the proposed method is applicable to other popular ICA algorithms. The major advantage of using ICA is its capability of classifying objects with u...
متن کامل